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A theorem due to Lord Rayleigh is applied to the graphs and bual graphs of 
conjugated hydrocarbon molecules to show how the distribution of their eigenvalues 
can be understood. A lower bound to the number of eigenvalues larger than or equal 
to 2 can be predicted easily from the graphs. The uses of the theorem as applied to 

polyenes, non-alternants and polyhex are illustrated. 

1. Introduction 

Information about the distribution of the orbital eigenvalues of an alternant 
hydrocarbon in the Htickel or graphical theory of conjugated systems has been 
useful in relating its chemical behaviour to its geometrical characteristics. The best- 
studied of these relations has been that between the frontier orbital energy and the 
reactivity of the molecule. It is now appropriate to consider further relations. Knowledge 
about the distribution generally can be used to generate approximate formulae for 
the total pi energy [1]. 

This paper demonstrates a simple method of obtaining information about the 
number of graphical eigenvalues greater than two and the number greater than one. 
Using this method, it is possible to derive such information almost from inspection 
of  the molecular graph. 

The method can be extended to give similar information about non-alternants. 
As a further example, the number of  positive eigenvalues is discussed briefly. 

2. The Rayleigh theorem 

The method described here relies on a theorem due to Lord Rayleigh [2]. It 
can be rewritten in the present context as follows: 

Given an m by m Hermitian matrix A with distinct eigenvalues ei, i = 1 . . . . .  m, 
numbered in descending order, and an arbitrary set of n orthonormal vectors v,, 
r = 1 . . . . .  n, (n < m) defined in the m dimensional space on which A acts, form a 
new Hermitian matrix E by taking all the products: 
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E r s = v ~ A v s ,  r , s = l  . . . . .  n 

(v H is the Hermitian conjugate of v.) Then let ei be the eigenvalues of E, assuming 
these to be distinct and numbered in descending order. The theorem relates these 
to the eigenvalues of A and says that 

el > el > e~_n+l, ca> e2 > ~ _ , +  2 . . . . .  e~ > e, >_ e,,. 

Degeneracy among the eigenvalues is treated as a limiting case of this. 

An immediate example of this is the well-known separation theorem. In this 
n = m - 1 and the vectors are the original basis set with one vector omitted. The 
inequalities then become 

el > el > e2 > e2 > e3 > • • .  era-1 >- era, 

which is the usual result, showing that the original eigenvalues are separated by 
those of the reduced matrix. In some applications, the sum of the eigenvalues is 
sufficient and this is easily deduced from the trace of E. 

For some purposes, a simpler form of the theorem is sufficient. In this, we 
label the largest and smallest eigenvalues of E as e> and e< and the theorem states 
that there are at least n eigenvalues of A larger than or equal to e< and at least n 
smaller than or equal to e>. The inequalities take their simplest form when all the 
eigenvalues of E are equal, since then e< = e>. 

These versions of the theorem allow us to embed molecular fragments within 
a molecule and use their eigenvalues to estimate the eigenvalues of the larger 
molecule. Embedding, in the strict sense, has become (see refs. [3,4]) a powerful 
method of identifying some special eigenvalues of molecules by embedding within 
them fragments whose eigenvalues are known. These fragments are surrounded by 
nodes and reflected fragments so that the eigenvector equations for the entire molecule 
are satisfied. Approximate embedding is a more flexible procedure and yields 
inequalities on the number of eigenvalues within certain limits rather than their 
exact values. If two embedded fragments do not have any common atoms, then they 
will be disjoint. The fragment eigenvectors, in particular, will then remain orthogonal 
as vectors in the space of the molecule. The operation of A on one of these eigenvectors 
will produce non-vanishing components at all neighbouring atoms. If any of these 
atoms belong to another fragment, then a non-vanishing off-diagonal element will 
arise in E. If each fragment is surrounded by node atoms not in any other fragment, 
then the off-diagonal elements of E will vanish. This greatly simplifies the application 
of the theorem. 

In the following applications of this theorem to alternants, attention is focused 
on the positive eigenvalues of A. Since, for an alternant, there are as many negative 
eigenvalues as positive, this means that the lower inequalities are not used. For 
these molecules, the distribution of the negative eigenvalues mirrors that of the 
positive ones. 
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The smallest eigenvalue of  a matrix can be estimated from the Levy-Hadamard  
theorem [5], which says that all the eigenvalues lie within the set of  intervals, each 
of  which has a diagonal element as its centre and as radius the sum of  the moduli 
of  the off-diagonal elements in the same row. 

3. Application to polyenes 

As a simple but useful application of the theorem, we consider the eigenvalues 
of  polyenes which are greater than or equal to 1. For these, we use the occupied 
eigenvector of  ethene, viz. that which has two neighbouring C atoms with coefficients 
of  1/-~/-2 and e = 1. The ethenes are now embedded into the polyene so that there 
is at least one extra C atom as a node between every pair of  ethenes. The number 
of  eigenvalues greater than or equal to 1 will be at least the number of  embedded 
ethenes. Two examples are shown in fig. 1. Butadiene has one embedded ethene 
and, in fact, has one eigenvalue greater than one. 3-vinyl-hexatriene has three 
ethenes and also has three such eigenvalues. This suggests that the theorem may 
give a good estimate of  the exact number of  these eigenvalues. 

Fig. 1. Embedding ethenes in polyenes. 

The ethenes are shown in fig. 1 as double bonds and the separating atoms 
as zeros. Since they do not overlap, the three vectors are orthogonal and, since there 
is a node atom between every pair, the matrix E has zero matrix elements between 
them. Thus, the E matrix is diagonal with unit elements on the diagonal. The 
number of ethenes placed in the original skeleton will then determine the minimum 
number of eigenvalues greater than or equal to 1. This number will be called the 
white number W of  the molecule. 

The white numbers for the linear polyenes are easily deduced. The atoms are 
divided into groups of  three from one end. The first two are the ethene and the third 
the node. Thus, for these molecules or radicals, W = I_(n + 1)/3/, where this symbol 
indicates the largest integer less than the argument. For the annulenes, the white 
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number is W = Ln/3J. Since the eigenvalues of  these polyenes are known, these 
numbers can he verified to be the correct numbers. The presence of  branching 
complicates the evaluation of  W. Some examples are shown in table 1 to illustrate 
the variety of  results. These results show that W is more than just  a lower limit, but 

Table 1 

White and green numbers and numbers of eigenvalues. 

Molecule/radical n W #(e > 1) G #(e > "x~) 

3-vinyl-butadiene 6 2 2 1 1 
3-vinyl-hexatriene 8 3 3 1 1 
2,3-divinyl-butadiene 8 2 2 1 1 
trivinyl-methyl 7 3 3 1 1 
benzyl 7 2 3 1 1 

is indeed a good estimate of  #(e > 1), the actual number of  eigenvalues greater than 
or equal to 1. Only the final example is different and this is the only non-polyene. 
The presence of  a ring complicates the calculation and a separate treatment is 
needed. 

Another embedding which is easy to apply uses the largest eigenvalue of  the 
radical trimethylene methyl. This has e = ~f3. A polyene which has one branch 
point, such as 3-vinyl-hexatriene in table 1, can have one such embedding so that 
at least one eigenvalue will be greater than or equal to ~ 3  and, for this example, 
exactly one is found. When there are several branch points, it will be necessary to 
fit this radical fragment into the molecule with separating C atoms as nodes in order 
to estimate the number of  these eigenvalues. 

More information is often found by applying the matrix A to each vector  
twice to give the squared matrix S: 

Srs = uHA2Us, r, s = 1, . . . .  n. 

For altemants, including polyenes, A can be partitioned as 

I ° ol A =  
B T 

and A 2 becomes 

A2=(7 B B  H ' 
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but BnB and BB H have the same non-zero eigenvalues, so only one need be considered. 
Since the atoms interact only with those in the same altemant set and the vectors 
ur can be divided into v, involving only the starred atoms and w, the unstarred, the 
matrix S divides into two matrices, 

x .  = HSw,,  r . .  = 

and only one of  X and Y is necessary. The square-root of the lowest eigenvalue of 
this matrix gives a tighter lower bound for the n largest eigenvalues of  the molecule. 
The second matrix gives the same results, and these account for the negative eigenvalues 
of A which have the same squares as the positive ones. This process can be put into 
graphical form by introducing the square graphs. These are formed by joining the 
atoms of  A that belong to the same altemant set by edges if the atoms are second 
neighbours. Since the graph of A is bipartite, there are two such unconnected 
graphs. By adding a weight at each vertex equal to the degree of  that vertex in A, 
the graphs become a representation of BHB and BB H. For benzenoids, these graphs 
contain triangles and so are not bipartite. X is derived from the BHB graph using 
the w~ vectors, and Y from BB n, just as E is derived from A. 

An independent set of vertices of  a graph is defined as a set no two of whose 
members are connected by an edge (see, for example, ref. [6]). The selection of an 
independent set can be regarded as the first stage in the colouring of a graph. All 
the members of  such a set are given the same colour. A bipartite graph has two 
independent sets. A graph containing triangles has at least three, since the three 
vertices must have different colours (see appendix). For a squared graph, the largest 
set of  independent vertices which are not of  degree 1 can be calculated as its green 
number (G). It gives the lower bound to the number of eigenvalues of A which are 
greater than or equal to -~/2. Examples of  G and #(e > -,/2) are shown in table 1. 

4. Eigenvectors for benzene 

We begin by listing the positive eigenvalues and eigenvectors for benzene. 
These are shown in fig. 2: 

1 

1 

1 

0 2 

1 - 1  

0 ='2 

v 1 v 2 v 3 

Fig. 2. Positive eigenvectors for benzene. 

-1 
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vl is then normalized by dividing each component by ~-8, v2 by 2 and v3 by 
2-f3. The eigenvalues are 2, 1, 1, respectively. We note that the first has no preferred 
direction, whereas the second and third depend on the direction taken as vertical 
and are indicated by an arrow inside the hexagon. 

It is now trivial to embed these in the benzyl radical to show that it will have 
at least one eigenvalue larger than or equal to two, and two more larger than or 
equal to one. 

5. The red set of a polyhex 

From the graph of any polyhex, a new graph can be constructed by placing 
a vertex at the centre of each hexagon and joining these with an edge when the two 
hexagons share a common edge. This is called the bual [7] of the molecule (various 
other names for this have been suggested). For a catacondensed polyhex, the bual 
is a tree and so is bipartite. Its vertices can be coloured using only two colours. For 
these polyhex, we define the red set as the coloured set with the larger number of 
vertices. In general, however, the bual of a polyhex is not a bipartite graph, but we 
can imagine the first stage in the colouring of its vertices to be the selection of an 
independent set with the maximum number of vertices (see appendix). This will be 
the red set. The  red vertices (red hexagons in the original polyhex) have the property 
that no two reds are nearest neighbours. The remaining vertices may require several 
colours, but we do not need this information. Some molecules possess several 
alternative red sets which are of equal size. It is then an advantage to select one 
of these that has the largest e<. The number of vertices in the red set will he called 
the red number (R) of the polyhex. For unbranched catacondensed molecules, and 
for all with bipartite buals, R = / ( r  + 1)/2J when the number of rings is r. 

6. The upper eigenvalues 

In this application of the Rayleigh theorem, the vectors are defined as the 
normalized vl vectors (see fig. 2) for the hexagons whose vertices form the red set. 
The matrix E derived from this set has R rows and columns, and its matrix elements 
are determined as follows: 

E,$ = 2, 

= O, 

= 1/6, 

=0,  

r = s ;  

if r and s have one vertex between them in a straight line; 

if r and s are joined to an intermediate vertex making a 120 ° 
angle connection; 

if r and s are more distant. 

The meaning of these distinctions is clarified in fig. 3. The red vertices are denoted 
by a circle around the vertex. Clearly E will be in diagonal form if all the red 
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E1 2 = O 

~ E1 2 = 1/6 

Fig. 3. Matrix elements between red vertices. 

vertices are in rectilinear relations to one another. The R-fold degenerate eigenvalue 
is then 2. Thus, for these molecules, the theorem gives R as a lower bound to the 
number of eigenvalues of A which are greater than, or equal to, 2. Since the red set 
has been chosen to maximize the number of vectors, this is often exactly the number 
of these eigenvalues. (There must also be at least R eigenvalues less than 2, but this 
is an underestimate of their number.) If the red vertices involve angular connections, 
it may be better to use a smaller set of vertices which are further apart so that all 
the interactions vanish and E becomes diagonal. When E is not diagonal, an estimate 
of e<, its lowest eigenvalue, is required. Since a lower limit to this is sufficient, an 
approximation can be found using the Levy-Hadamard theorem as above. The Rayleigh 
theorem then bounds the number of eigenvalues greater than or equal to e<. When 
e< is close to 2, this bound may be very close to the actual number of eigenvalues. 
A better estimate of e< can sometimes be found using the squared matrix S. 

7. Lower eigenvalues 

The Rayleigh theorem and the red set can also be used with the eigenvectors 
vz, v3 of fig. 2, corresponding to the eigenvalue 1, or with some subset of them 
since all are orthogonal. This ½ vector has a natural vertical direction corresponding 
to the line between the nodes. It is convenient to give all the hexagons in the set 
the same direction. The matrix elements of A between these vz vectors belonging 
to the red hexagons are defined as 

Cr$ ~ 1, 

= O, 

= - 1 / 4 ,  

O,' 

r = s ;  

r and s second neighbours in the same horizontal or vertical line; 

r and s with angular connection as in fig. 4; 

if r and s more distant. 
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C12= 0 

2 = -1/4 

L ~  C =0 

Fig. 4. Matrix elements for red ½ vectors. 

These are illustrated in fig. 4. The red vertices 1 and 2 are encircled. The vertical 
direction is indicated for one ring, but is the same for all. As for E, the easiest 
situation is when the whole set has linear connections so that the matrix C is 
diagonal with 1 for each eigenvalue. The vertical direction can be chosen to assist 
this. Thus, using the previous vl set and this u2 set alone, we can then deduce that 
at least 2R values of  A are greater than or equal to 1. 

Similarly, the vectors v3 over the red set give the matrix D,, with matrix 
elements: 

Drs = 1, r = s ;  

= O, if r and s separated by a straight line; 

= - 1 / 3 ,  if r is a second neighbour vertically above s; 

= -1 /12 ,  if an angular connected second neighbour; 

= O, if more distant. 

Since D has more non-zero interactions than C, it is less easy to use and often gives 
less information. Furthermore, when both these sets of  vectors are used, it is possible 
that there will be matrix elements between the two sets of  vectors though not 
between those on the same hexagon. The lowest eigenvalue L of  the combined 
matrix of  which C and D are diagonal blocks is needed. This L is the lower bound 
such that there are at least 3R eigenvalues of A greater than L. Any matrix elements 
of  A between these vectors and the vl vectors may be ignored because the difference 
of  1 between their diagonal elements means that their effect is very small. 
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For an altemant molecule, there is the mirror property that each strictly 
positive eigenvalue has a corresponding strictly negative one which is its negative. 
The information about the distribution of positive eigenvalues of A is then balanced 
by information about its negative eigenvalues. 

8. The effect of other rings 

The complication of having other-sized rings among the hexagons can be 
dealt with by the same arguments. There will always be an eigenvector v for any 
ring with the eigenvalue 2. It gives all the atoms around the ring equal components. 
It is used in place of vl when the ring belongs to the red set. The rest of the 
argument for the eigenvalues greater than or equal to 2 is very similar, although the 
matrix elements between rings and hexagons and rings and rings are more varied. 
In general, it is desirable to include the ring in the red set if it has fewer than six 
atoms, since such a ring is less effective in separating two red hexagons. Thus, the 
red set is defined for a larger class of molecule but its use is confined to the upper 
eigenvalues. The lower eigenvalues can be discussed by embedding ethene to find 
the white number. 

9. Examples 

The utility of these results is seen more clearly by showing how they apply 
to some examples. 

For the polyacenes, being linear catacondensed molecules, the red set will 
have R = r/2 if r is even and R = (r + 1)/2 if r is odd, i.e. the red set contains every 
other ring starting from one end. These vertices are all in the same line so the matrix 
E consists of 2 along the diagonal, and so the number of eigenvalues greater than 
or equal to 2 is at least R. In fact, since there are explicit formulae for these 
eigenvalues [8], we know that this is exactly the number of these eigenvalues. 
Similarly, using all three vectors with the vertical taken normal to the bual edges, 
the number of eigenvalues greater than or equal to 1 is at least 3R. The remaining 
positive eigenvalues are generally less than 1 in magnitude. 

Another series of catacondensed molecules which can be treated simply has 
its rings placed alternatively to one side and to the other of a central axis, as in 
chrysene. In this, the matrix elements of E between alternate rings are 1/6. The 
lowest eigenvalue of this E for any number of rings is always greater than 2 - 1/3 
= 1.666. In fact, for r = 3, the eigenvalue of E is 1.833. By using A twice, the bound 
for r = 3 is raised to 1.915 and, for large r, this bound is 1.826 so that tighter bounds 
can be found for these molecules. The number of eigenvalues of A greater than 
1.826 is then at least R = r/2 for r even and (r + 1)/2 for r odd. The actual results 
are shown in table 1. By selecting vertices which are at least two hexagons apart 
so that all the interactions vanish, further information about the number strictly 
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greater than or equal to 2 is obtained. Similarly for the lower eigenvalues. By taking 
the vertical direction of ½ along the axis of the molecule, C is diagonal and the 
theorem shows that the number of eigenvalues greater than or equal to 1 will be 
at least 2R. The use of u3 and D allows the result to be extended to show that there 
are at least 3R greater than 0.33. Alternatively, by taking fewer and more distant 
vertices with v3, W, the number greater than or equal to 1, can be estimated. This 
technique of using a selection of ½ and v3 vectors is generally more efficient for 
polyhex than the embedding of ethene fragments used earlier for polyenes. The 
actual results for this series is shown in table 2. 

Table 2 

Eigenvalues of the chrysene series of molecules in various ranges. 
r is the number of rings, R is the red number, W is the white number. 

r R #(e~1.83) W # ( e ~ l )  # (e~1/3)  

2 1 1 3 4 5 

3 2 2 5 5 7 
4 2 2 6 6 9 

5 3 3 8 8 11 

6 3 3 8 10 13 

7 4 4 10 11 15 

8 4 5 11 12 17 

9 5 5 13 13 19 
10 5 5 13 15 21 

Table 2 shows that the R is always less than or equal to the next column 
giving the number of eigenvalues greater than 1.83. The fourth column W is always 
less than or equal to the fifth column and the sixth is greater than 3R. Since none 
of these molecules listed has an eigenvalue less than 1/3, the final column is also 
the total number of positive values, so that the theorem adds nothing here. Clearly, 
the theorem is always obeyed! It can be seen that the first condition, using R, is 
the most useful in this series since the bound is often the exact number of eigenvalues 
and the condition embodied in W is the next most useful. 

10. Extension to non-alternants 

The above application can be interpreted as an approximate embedding using 
hexagons. The embedding of hexagons is facilitated by using the bual. The theorem 
can also be applied to the original adjacency matrix A without using the bual but 
by taking some other fragment to embed. Thus, as a simple example, we can take 
as the vector a one-component vector on one atom. This methyl fragment has a zero 
eigenvalue. The related independent set is then defined as an independent set of C 
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atoms. For an alternant, its size N is n/2 or (n + 1)/2 for n even or odd, respectively 
(i.e. N = I_(n + 1)/2J), where n is the number of C atoms. For a non-alternant, at 
least three colours are needed and the red set will be the largest independent set 
of  C atoms. An odd numbered ring with 2n + 1 atoms will have N = n. These 
vectors have zero mean values so the diagonal elements of  E are zero, and since 
none of  the neighbouring atoms are in the set, the off-diagonal elements are also 
zero. The theorem then states that there are at least N eigenvalues which are positive 
(or zero) and at least N which are negative (or zero). For an odd altemant, this 
allows us to conclude that at least one eigenvalue will be zero. For a non-alternant, 
it gives some more interesting information on the balance between positive and 
negative eigenvalues. Thus, heptafulvalene (n = 14) has N = 6, so it is not surprising 
that one of  its occupied orbitals has a negative eigenvalue. 

Since every ring has 2 as an eigenvalue, more progress can be made on the 
larger eigenvalues of molecules containing rings than on the smaller ones. By 
counting R, the number of  independent red rings, irrespective of  size, a bound to 
the number of eigenvalues greater than or equal to 2 is obtained. Similarly, by 
embedding the maximum number of  ethene fragments W, the bound to the total 
number greater than or equal to 1 is obtained. Some examples of these relations are 
given in table 3, which shows that the bounds are always close to the actual 
numbers of  the eigenvalues. Where the numbers differ in the two last columns, it 
is interesting that the smallest eigenvalue involved is exactly equal to 1. 

Table 3 

Distribution of eigenvalues for non-alternants. 

Molecule R #(e >_ 2) W #(e > 1) 

fulvene 1 1 2 2 

acenaphthylene 1 1 4 4 

fluoranthrene 2 2 5 6 

pentalene 1 1 2 3 

azulene 1 1 3 3 

pyracylene 2 2 5 5 

fulvalene 1 1 3 3 

11. Relations for the total pi energy 

It is possible to consider dividing a molecule into two disjoint parts and 
summing the energies of  these to obtain an estimate of  the energy of  the molecule. 
We can now examine this relation using the Rayleigh theorem. 

If the vectors to be used for E are the occupied molecular orbitals of  the two 
molecular fragments, then E will have their energies on its diagonal. There will be 
off-diagonal elements between the orbitals of  the two fragments  but these have no 
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effect on the trace of E, which gives an estimate of  the total energy. Thus, the sum 
of  the energies of the two fragments will approximate the total energy but, because 
the eigenvalues of E are less than those of A, the estimate will always be an 
underestimate. 

A better estimate can be found by dividing the molecule into two radical 
fragments. The same argument can be applied. However, each radical has a non- 
bonding orbital with e = 0. These two will interact in E because of  the bonds 
between the fragments. This interaction is easily calculated because the non-bonding 
orbital can be found without reference to the remaining eigenvectors. The consequence 
of the interaction is that their energy is split. One eigenvector becomes occupied 
by two electrons, while the other is empty. Thus, the trace of E is no longer the 
total energy. The repulsive energy of the empty orbital (viz. the interaction) must 
be removed and this increases the estimate of the total energy. The result is still 
an underestimate of  the total energy since the other occupied orbitals have some 
interaction with the empty eigenvectors not in the basis of E. 

There are many ways of dividing a molecule into fragments. Evidence from 
a small number of examples suggests that it may be an advantage if the least number 
of bonds are broken in doing this. It may also be an advantage to minimize the 
number of  atoms with one C neighbour. 

As an example, we consider the division of  anthracene. It can be divided 
symmetrically into two benzyl radicals. These interact at two points and their 
interaction is 5/7. One of the combined molecular orbitals has an energy of  5/7 and 
the other of  -5 /7 .  The former becomes doubly occupied and the latter empty. The 
sum of the radical energies is to be corrected by 10/7 to allows for this. The total 
now becomes 2(8.72057) + 10/7 = 18.86971. A slightly different estimate is obtained 
by using ~-naphthyl-methyl and allyl radicals. These give 18.62734. Since the 
correct value is 19.31371, neither is very close. 

The reason for this lack of accuracy is the fact that several connecting bonds 
have been removed in the division. Since the sum of the squares of  the occupied 
energies of  an altemant is the total number of CC bonds, it follows that removing 
several bonds does damage to the set of eigenvalues by reducing them and so the 
total pi energy must be reduced. The radical device is a partial accounting for this 
lack. 
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Appendix 

Since the colouring of a graph consisting of triangles is unfamiliar, it is of 
interest to comment on some results. The triangle requires three colours, since no 
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two of  its vertices can have the same colour. The largest possible value of  R, the 
size of  the independent red set, equals the number of  triangles. Each of  the red 
vertices then belongs to one triangle. A first step in selecting the red vertices is to 
look at those which belong to one triangle. Vertices belonging to two triangles 
should be examined next. If the triangles which contain the red vertices are not all 
the triangles, then it is worth while to try to enlarge the selection. Those belonging 
to many triangles are the least desirable. 
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